Multivariate time series modeling, estimation and prediction of mortalities
Erland Ekheden and
Ola Hössjer
Insurance: Mathematics and Economics, 2015, vol. 65, issue C, 156-171
Abstract:
We introduce a mixed regression model for mortality data which can be decomposed into a deterministic trend component explained by the covariates age and calendar year, a multivariate Gaussian time series part not explained by the covariates, and binomial risk. Data can be analyzed by means of a simple logistic regression model when the multivariate Gaussian time series component is absent and there is no overdispersion. In this paper we rather allow for overdispersion and the mixed regression model is fitted to mortality data from the United States and Sweden, with the aim to provide prediction and intervals for future mortality and annuity premium, as well as smoothing historical data, using the best linear unbiased predictor. We find that the form of the Gaussian time series has a large impact on the width of the prediction intervals, and it poses some new questions on proper model selection.
Keywords: Best linear unbiased predictor; Generalized least squares; Longevity; Mortality prediction; Multivariate time series; Overdispersion (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668715001547
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:65:y:2015:i:c:p:156-171
DOI: 10.1016/j.insmatheco.2015.09.013
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().