EconPapers    
Economics at your fingertips  
 

Estimating the tails of loss severity via conditional risk measures for the family of symmetric generalised hyperbolic distributions

Katja Ignatieva and Zinoviy Landsman

Insurance: Mathematics and Economics, 2015, vol. 65, issue C, 172-186

Abstract: This paper addresses one of the main challenges faced by insurance companies and risk management departments, namely, how to develop standardised framework for measuring risks of underlying portfolios and in particular, how to most reliably estimate loss severity distribution from historical data. This paper investigates tail conditional expectation (TCE) and tail variance premium (TVP) risk measures for the family of symmetric generalised hyperbolic (SGH) distributions. In contrast to a widely used Value-at-Risk (VaR) measure, TCE satisfies the requirement of the “coherent” risk measure taking into account the expected loss in the tail of the distribution while TVP incorporates variability in the tail, providing the most conservative estimator of risk. We examine various distributions from the class of SGH distributions, which turn out to fit well financial data returns and allow for explicit formulas for TCE and TVP risk measures. In parallel, we obtain asymptotic behaviour for TCE and TVP risk measures for large quantile levels. Furthermore, we extend our analysis to the multivariate framework, allowing multivariate distributions to model combinations of correlated risks, and demonstrate how TCE can be decomposed into individual components, representing contribution of individual risks to the aggregate portfolio risk.

Keywords: Tail value-at-risk; Tail conditional expectation; Tail variance premium (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668715001493
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:65:y:2015:i:c:p:172-186

DOI: 10.1016/j.insmatheco.2015.09.007

Access Statistics for this article

Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu

More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:insuma:v:65:y:2015:i:c:p:172-186