A note on optimal investment–consumption–insurance in a Lévy market
Calisto Guambe and
Rodwell Kufakunesu
Insurance: Mathematics and Economics, 2015, vol. 65, issue C, 30-36
Abstract:
In Shen and Wei (2014) an optimal investment, consumption and life insurance purchase problem for a wage earner with Brownian information has been investigated. This paper discusses the same problem but extend their results to a geometric Itô–Lévy jump process. Our modelling framework is very general as it allows random parameters which are unbounded and involves some jumps. It also covers parameters which are both Markovian and non-Markovian functionals. Unlike in Shen and Wei (2014) who considered a diffusion framework, ours solves the problem using a novel approach, which combines the Hamilton–Jacobi–Bellman (HJB) and a backward stochastic differential equation (BSDE) in a Lévy market setup. We illustrate our results by two examples.
Keywords: Investment–consumption–insurance; Jump–diffusion; HJB; BSDE (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668715300020
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:65:y:2015:i:c:p:30-36
DOI: 10.1016/j.insmatheco.2015.07.008
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().