EconPapers    
Economics at your fingertips  
 

A new class of copulas involving geometric distribution: Estimation and applications

Kong-Sheng Zhang, Jin-Guan Lin and Pei-Rong Xu

Insurance: Mathematics and Economics, 2016, vol. 66, issue C, 1-10

Abstract: Copula is becoming a popular tool for modeling the dependence structure among multiple variables. Commonly used copulas are Gaussian, t and Gumbel copulas. To further generalize these copulas, a new class of copulas, referred to as geometric copulas, is introduced by adding geometric distribution into the existing copulas. The interior-point penalty function algorithm is proposed to obtain maximum likelihood estimation of the parameters of geometric copulas. Simulation studies are carried out to evaluate the efficiency of the proposed method. The proposed estimation method is illustrated with workers’ compensation insurance data and exchange rate series data.

Keywords: Copula; Geometric distribution; Maximum likelihood estimation; Interior-point penalty function method; Bootstrap method (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016766871500150X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:66:y:2016:i:c:p:1-10

DOI: 10.1016/j.insmatheco.2015.09.008

Access Statistics for this article

Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu

More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:insuma:v:66:y:2016:i:c:p:1-10