EconPapers    
Economics at your fingertips  
 

Bayesian quantile regression model for claim count data

Mohd Fadzli Mohd Fuzi, Abdul Aziz Jemain and Noriszura Ismail

Insurance: Mathematics and Economics, 2016, vol. 66, issue C, 124-137

Abstract: Quantile regression model estimates the relationship between the quantile of a response distribution and the regression parameters, and has been developed for linear models with continuous responses. In this paper, we apply Bayesian quantile regression model for the Malaysian motor insurance claim count data to study the effects of change in the estimates of regression parameters (or the rating factors) on the magnitude of the response variable (or the claim count). We also compare the results of quantile regression models from the Bayesian and frequentist approaches and the results of mean regression models from the Poisson and negative binomial. Comparison from Poisson and Bayesian quantile regression models shows that the effects of vehicle year decrease as the quantile increases, suggesting that the rating factor has lower risk for higher claim counts. On the other hand, the effects of vehicle type increase as the quantile increases, indicating that the rating factor has higher risk for higher claim counts.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668715001651
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:66:y:2016:i:c:p:124-137

DOI: 10.1016/j.insmatheco.2015.11.004

Access Statistics for this article

Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu

More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:insuma:v:66:y:2016:i:c:p:124-137