Time-consistent actuarial valuations
Antoon Pelsser and
Ahmad Salahnejhad Ghalehjooghi
Insurance: Mathematics and Economics, 2016, vol. 66, issue C, 97-112
Abstract:
Time-consistent valuations (i.e. pricing operators) can be created by backward iteration of one-period valuations. In this paper we investigate the continuous-time limits of well-known actuarial premium principles when such backward iteration procedures are applied. This method is applied to an insurance risk process in the form of a diffusion process and a jump process in order to capture the heavy tailed nature of insurance liabilities. We show that in the case of the diffusion process, the one-period time-consistent Variance premium principle converges to the non-linear exponential indifference price. Furthermore, we show that the Standard-Deviation and the Cost-of-Capital principle converge to the same price limit. Adding the jump risk gives a more realistic picture of the price. Furthermore, we no longer observe that the different premium principles converge to the same limit since each principle reflects the effect of the jump differently. In the Cost-of-Capital principle, in particular the VaR operator fails to capture the jump risk for small jump probabilities, and the time-consistent price depends on the distribution of the premium jump.
Keywords: Time-consistent; Actuarial valuation; Backward iteration; Infinitesimal generator; Jump process; Partial Differential Equation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668715001602
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Time-Consistent Actuarial Valuations (2011) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:66:y:2016:i:c:p:97-112
DOI: 10.1016/j.insmatheco.2015.10.010
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().