Precommitment and equilibrium investment strategies for defined contribution pension plans under a jump–diffusion model
Jingyun Sun,
Zhongfei Li and
Yan Zeng
Insurance: Mathematics and Economics, 2016, vol. 67, issue C, 158-172
Abstract:
In this paper, we study an optimal investment problem under the mean–variance criterion for defined contribution pension plans during the accumulation phase. To protect the rights of a plan member who dies before retirement, a clause on the return of premiums for the plan member is adopted. We assume that the manager of the pension plan is allowed to invest the premiums in a financial market, which consists of one risk-free asset and one risky asset whose price process is modeled by a jump–diffusion process. The precommitment strategy and the corresponding value function are obtained using the stochastic dynamic programming approach. Under the framework of game theory and the assumption that the manager’s risk aversion coefficient depends on the current wealth, the equilibrium strategy and the corresponding equilibrium value function are also derived. Our results show that with the same level of variance in the terminal wealth, the expected optimal terminal wealth under the precommitment strategy is greater than that under the equilibrium strategy with a constant risk aversion coefficient; the equilibrium strategy with a constant risk aversion coefficient is revealed to be different from that with a state-dependent risk aversion coefficient; and our results can also be degenerated to the results of He and Liang (2013b) and Björk et al. (2014). Finally, some numerical simulations are provided to illustrate our derived results.
Keywords: Defined contribution pension plan; Precommitment strategy; Equilibrium strategy; Mean–variance criterion; Jump–diffusion process (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668716300506
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:67:y:2016:i:c:p:158-172
DOI: 10.1016/j.insmatheco.2016.01.005
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().