EconPapers    
Economics at your fingertips  
 

Bayesian approaches for analyzing earthquake catastrophic risk

Yunxian Li, Niansheng Tang and Xuejun Jiang

Insurance: Mathematics and Economics, 2016, vol. 68, issue C, 110-119

Abstract: Extreme value theory has been widely used in analyzing catastrophic risk. The theory mentioned that the generalized Pareto distribution (GPD) could be used to estimate the limiting distribution of the excess value over a certain threshold; thus the tail behaviors are analyzed. However, the central behavior is important because it may affect the estimation of model parameters in GPD, and the evaluation of catastrophic insurance premiums also depends on the central behavior. This paper proposes four mixture models to model earthquake catastrophic loss and proposes Bayesian approaches to estimate the unknown parameters and the threshold in these mixture models. MCMC methods are used to calculate the Bayesian estimates of model parameters, and deviance information criterion values are obtained for model comparison. The earthquake loss of Yunnan province is analyzed to illustrate the proposed methods. Results show that the estimation of the threshold and the shape and scale of GPD are quite different. Value-at-risk and expected shortfall for the proposed mixture models are calculated under different confidence levels.

Keywords: Mixture models; Bayesian approaches; MCMC methods; Earthquake losses; Catastrophic risk (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668715302857
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:68:y:2016:i:c:p:110-119

DOI: 10.1016/j.insmatheco.2016.02.004

Access Statistics for this article

Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu

More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:insuma:v:68:y:2016:i:c:p:110-119