EconPapers    
Economics at your fingertips  
 

Omega diffusion risk model with surplus-dependent tax and capital injections

Zhenyu Cui and Duy Nguyen

Insurance: Mathematics and Economics, 2016, vol. 68, issue C, 150-161

Abstract: In this paper, we propose and study an Omega risk model with a constant bankruptcy function, surplus-dependent tax payments and capital injections in a time-homogeneous diffusion setting. The surplus value process is both refracted (paying tax) at its running maximum and reflected (injecting capital) at a lower constant boundary. The new model incorporates practical features from the Omega risk model (Albrecher et al., 2011), the risk model with tax (Albrecher and Hipp, 2007), and the risk model with capital injections (Albrecher and Ivanovs, 2014). The study of this new risk model is closely related to the Azéma–Yor process, which is a process refracted by its running maximum. We explicitly characterize the Laplace transform of the occupation time of an Azéma–Yor process below a constant level until the first passage time of another Azéma–Yor process or until an independent exponential time. We also consider the case when the process has a lower reflecting boundary. This result unifies and extends recent results of Li and Zhou (2013) and Zhang (2015). We explicitly characterize the Laplace transform of the time of bankruptcy in the Omega risk model with tax and capital injections up to eigen-functions, and determine the expected present value of tax payments until default. We also discuss a further extension to occupation functionals through stochastic time-change, which handles the case of a non-constant bankruptcy function. Finally we present examples using a Brownian motion with drift, and discuss the pricing of quantile options written on the Azéma–Yor process.

Keywords: Time-homogeneous diffusion; Azéma–Yor process; Occupation time; Risk model with tax; Omega risk model; Reflected diffusions (search for similar items in EconPapers)
JEL-codes: C02 C63 G12 G13 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668715301955
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:68:y:2016:i:c:p:150-161

DOI: 10.1016/j.insmatheco.2016.03.012

Access Statistics for this article

Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu

More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:insuma:v:68:y:2016:i:c:p:150-161