Inference for intermediate Haezendonck–Goovaerts risk measure
Xing Wang and
Liang Peng
Insurance: Mathematics and Economics, 2016, vol. 68, issue C, 231-240
Abstract:
Recently Haezendonck–Goovaerts (H–G) risk measure has received much attention in actuarial science. Nonparametric inference has been studied by Ahn and Shyamalkumar (2014) and Peng et al. (2015) when the risk measure is defined at a fixed level. In risk management, the level is usually set to be quite near one by regulators. Therefore, especially when the sample size is not large enough, it is useful to treat the level as a function of the sample size, which diverges to one as the sample size goes to infinity. In this paper, we extend the results in Peng et al. (2015) from a fixed level to an intermediate level. Although the proposed maximum empirical likelihood estimator for the H–G risk measure has a different limit for a fixed level and an intermediate level, the proposed empirical likelihood method indeed gives a unified interval estimation for both cases. A simulation study is conducted to examine the finite sample performance of the proposed method.
Keywords: Empirical likelihood method; Haezendonck–Goovaerts risk measure; Intermediate quantiles; Nonparametric estimation; Wilks theorem (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668715302547
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:68:y:2016:i:c:p:231-240
DOI: 10.1016/j.insmatheco.2016.03.015
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().