EconPapers    
Economics at your fingertips  
 

Nonparametric estimation of operational value-at-risk (OpVaR)

Ainura Tursunalieva and Param Silvapulle

Insurance: Mathematics and Economics, 2016, vol. 69, issue C, 194-201

Abstract: This paper introduces nonparametric methods for estimating 99.9% operational value-at-risk (OpVaR) and its confidence interval (CI), and demonstrates their applications to US business losses. An attractive feature of these new methods is that there is no need to estimate either the entire heavy-tailed loss distribution or the tail region of the distribution. Furthermore, we provide algorithms that facilitate applied researchers and practitioners in risk management area to implement the sophisticated empirical likelihood ratio (ELR) based methodologies to construct the CI of the true underlying 99.9% OpVaR. In a simulation study, we find that the weighted ELR (WELR) CI estimator is more reliable than the ELR CI estimator. The empirical results show that the nonparametric OpVaR estimates are consistently larger than those of other comparable methods, which provide adequate regulatory capitals, particularly during crises. The findings have implications for regulators, and effective and efficient risk financing.

Keywords: Loss severity distribution; Risk analysis; Operational risk; Simulation; Empirical likelihood confidence band (search for similar items in EconPapers)
JEL-codes: C13 C14 C16 G32 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668716300774
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:69:y:2016:i:c:p:194-201

DOI: 10.1016/j.insmatheco.2016.05.010

Access Statistics for this article

Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu

More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:insuma:v:69:y:2016:i:c:p:194-201