A multivariate evolutionary credibility model for mortality improvement rates
Edo Schinzinger,
Michel M. Denuit and
Marcus C. Christiansen
Insurance: Mathematics and Economics, 2016, vol. 69, issue C, 70-81
Abstract:
The present paper proposes an evolutionary credibility model that describes the joint dynamics of mortality through time in several populations. Instead of modeling the mortality rate levels, the time series of population-specific mortality rate changes, or mortality improvement rates are considered and expressed in terms of correlated time factors, up to an error term. Dynamic random effects ensure the necessary smoothing across time, as well as the learning effect. They also serve to stabilize successive mortality projection outputs, avoiding dramatic changes from one year to the next. Statistical inference is based on maximum likelihood, properly recognizing the random, hidden nature of underlying time factors. Empirical illustrations demonstrate the practical interest of the approach proposed in the present paper.
Keywords: Mortality projection; Predictive distribution; Multi-population modeling; ARMA process; Lee-Carter model (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668715300937
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:69:y:2016:i:c:p:70-81
DOI: 10.1016/j.insmatheco.2016.04.004
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().