Multivariate tail conditional expectation for elliptical distributions
Zinoviy Landsman,
Udi Makov and
Tomer Shushi
Insurance: Mathematics and Economics, 2016, vol. 70, issue C, 216-223
Abstract:
In this paper we introduce a novel type of a multivariate tail conditional expectation (MTCE) risk measure and explore its properties. We derive an explicit closed-form expression for this risk measure for the elliptical family of distributions taking into account its variance–covariance dependency structure. As a special case we consider the normal, Student-t and Laplace distributions, important and popular in actuarial science and finance. The motivation behind taking the multivariate TCE for the elliptical family comes from the fact that unlike the traditional tail conditional expectation, the MTCE measure takes into account the covariation between dependent risks, which is the case when we are dealing with real data of losses. We illustrate our results using numerical examples in the case of normal and Student-t distributions.
Keywords: Elliptical distributions; Multivariate risk measures; Tail conditional expectation; Cumulative generator; Semi-subadditivity; Positive homogeneity (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668716300464
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:70:y:2016:i:c:p:216-223
DOI: 10.1016/j.insmatheco.2016.05.017
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().