Tail conditional moments for elliptical and log-elliptical distributions
Zinoviy Landsman,
Udi Makov and
Tomer Shushi
Insurance: Mathematics and Economics, 2016, vol. 71, issue C, 179-188
Abstract:
In this paper we provide the tail conditional moments for the class of elliptical distributions, which was introduced in Kelker (1970) and was widely discussed in Gupta et al. (2013) and for the class of log-elliptical distributions. These families of distributions include some important members such as the normal, Student-t, logistic, Laplace, and log-normal distributions. We give analytic formulae for the nth higher order unconditional moments of elliptical distributions, which has not been provided before. We also propose novel risk measures, the tail conditional skewness and the tail conditional kurtosis, for examining the skewness and the kurtosis of the tail of loss distributions, respectively.
Keywords: Elliptical distributions; Log-elliptical distributions; Tail conditional expectation; Tail conditional moments; Tail variance (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668715302778
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:71:y:2016:i:c:p:179-188
DOI: 10.1016/j.insmatheco.2016.09.001
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().