Uniform asymptotics for a multi-dimensional time-dependent risk model with multivariate regularly varying claims and stochastic return
Jinzhu Li
Insurance: Mathematics and Economics, 2016, vol. 71, issue C, 195-204
Abstract:
This paper is devoted to asymptotic analysis for a multi-dimensional risk model with a general dependence structure and stochastic return driven by a geometric Lévy process. We take into account both the dependence among the claim sizes from different lines of businesses and that between the claim sizes and their common claim-number process. Under certain mild technical conditions, we obtain for two types of ruin probabilities precise asymptotic expansions which hold uniformly for the whole time horizon.
Keywords: Asymptotics; Dependence; Lévy process; Multi-dimensional risk model; Multivariate regular variation; Stochastic return; Ruin probability (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668716302736
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:71:y:2016:i:c:p:195-204
DOI: 10.1016/j.insmatheco.2016.09.003
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().