Existence of optimal consumption strategies in markets with longevity risk
J. de Kort and
M.H. Vellekoop
Insurance: Mathematics and Economics, 2017, vol. 72, issue C, 107-121
Abstract:
Survival bonds are financial instruments with a payoff that depends on human mortality rates. In markets that contain such bonds, agents optimizing expected utility of consumption and terminal wealth can mitigate their longevity risk. To examine how this influences optimal portfolio strategies and consumption patterns, we define a model in which the death of the agent is represented by a single jump process with Cox–Ingersoll–Ross intensity. This implies that our stochastic mortality rate is guaranteed to be nonnegative, in contrast to many other models in the literature. We derive explicit conditions for existence of an optimal consumption and investment strategy in terms of model parameters by analysing certain inhomogeneous Riccati equations. We find that constraints must be imposed on the market price of longevity risk to have a well-posed problem and we derive the optimal strategies when such constraints are satisfied.
Keywords: Optimal consumption; Portfolio selection; Longevity risk; CIR process; Laplace transform (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668716300221
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:72:y:2017:i:c:p:107-121
DOI: 10.1016/j.insmatheco.2016.10.013
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().