Optimal consumption–investment strategy under the Vasicek model: HARA utility and Legendre transform
Hao Chang and
Kai Chang
Insurance: Mathematics and Economics, 2017, vol. 72, issue C, 215-227
Abstract:
This paper studies the optimal consumption–investment strategy with multiple risky assets and stochastic interest rates, in which interest rate is supposed to be driven by the Vasicek model. The objective of the individuals is to seek an optimal consumption–investment strategy to maximize the expected discount utility of intermediate consumption and terminal wealth in the finite horizon. In the utility theory, Hyperbolic Absolute Risk Aversion (HARA) utility consists of CRRA utility, CARA utility and Logarithmic utility as special cases. In addition, HARA utility is seldom studied in continuous-time portfolio selection theory due to its sophisticated expression. In this paper, we choose HARA utility as the risky preference of the individuals. Due to the complexity of the structure of the solution to the original Hamilton–Jacobi–Bellman (HJB) equation, we use Legendre transform to change the original non-linear HJB equation into its linear dual one, whose solution is easy to conjecture in the case of HARA utility. By calculations and deductions, we obtain the closed-form solution to the optimal consumption–investment strategy in a complete market. Moreover, some special cases are also discussed in detail. Finally, a numerical example is given to illustrate our results.
Keywords: Consumption–investment problem; The Vasicek model; HARA utility; Dynamic programming principle; Legendre transform; Closed-form solution (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668715302390
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:72:y:2017:i:c:p:215-227
DOI: 10.1016/j.insmatheco.2016.10.014
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().