Incorporating model uncertainty into optimal insurance contract design
Georg Ch. Pflug,
Anna Timonina-Farkas and
Stefan Hochrainer-Stigler
Insurance: Mathematics and Economics, 2017, vol. 73, issue C, 68-74
Abstract:
In stochastic optimization models, the optimal solution heavily depends on the selected probability model for the scenarios. However, the scenario models are typically chosen on the basis of statistical estimates and are therefore subject to model error. We demonstrate here how the model uncertainty can be incorporated into the decision making process. We use a nonparametric approach for quantifying the model uncertainty and a minimax setup to find model-robust solutions. The method is illustrated by a risk management problem involving the optimal design of an insurance contract.
Keywords: Insurance optimization; Model error; Minimax solution; Distributional robustness; Wasserstein distance (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668716300919
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:73:y:2017:i:c:p:68-74
DOI: 10.1016/j.insmatheco.2016.11.008
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().