On a bivariate copula with both upper and lower full-range tail dependence
Lei Hua
Insurance: Mathematics and Economics, 2017, vol. 73, issue C, 94-104
Abstract:
Copula functions can be useful in accounting for various dependence patterns appearing in joint tails of data. We propose a new two-parameter bivariate copula family that possesses the following features. First, both upper and lower tails are able to explain full-range tail dependence. That is, the dependence in each tail can range among quadrant tail independence, intermediate tail dependence, and usual tail dependence. Second, it can capture upper and lower tail dependence patterns that are either the same or different. We first prove the full-range tail dependence property, and then we obtain the corresponding extreme value copula. There are two applications based on the proposed copula. The first one is modeling pairwise dependence between financial markets. The second one is modeling dynamic tail dependence patterns that appear in upper and lower tails of a loss-and-expense data.
Keywords: Hypergeometric functions; Tail order; Intermediate tail dependence; Quadrant tail independence; Usual tail dependence; Beta prime scale mixtures (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668716304267
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:73:y:2017:i:c:p:94-104
DOI: 10.1016/j.insmatheco.2017.01.003
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().