Optimal insurance design with a bonus
Yongwu Li and
Zuo Quan Xu
Insurance: Mathematics and Economics, 2017, vol. 77, issue C, 111-118
Abstract:
This paper investigates an insurance design problem, in which a bonus will be given to the insured if no claim has been made during the whole lifetime of the contract, for an expected utility insured. In this problem, the insured has to consider the so-called optimal action rather than the contracted compensation (or indemnity) due to the existence of the bonus. For any pre-agreed bonus, the optimal insurance contract is given explicitly and shown to be either the full coverage contract when the insured pays high enough premium, or a deductible one otherwise. The optimal contract and bonus are also derived explicitly if the insured is allowed to choose both of them. The contract turns out to be of either zero reward or zero deductible. In all cases, the optimal contracts are universal, that is, they do not depend on the specific form of the utility of the insured. A numerical example is also provided to illustrate the main theoretical results of the paper.
Keywords: Optimal insurance design; Bonus–malus system; Insurance contract with bonus; Personalized contract; Expected utility (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668717301178
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:77:y:2017:i:c:p:111-118
DOI: 10.1016/j.insmatheco.2017.09.003
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().