Indifference pricing of a life insurance portfolio with risky asset driven by a shot-noise process
Xiaoqing Liang and
Yi Lu
Insurance: Mathematics and Economics, 2017, vol. 77, issue C, 119-132
Abstract:
In this paper, we investigate the pricing problem for a portfolio of life insurance contracts where the life contingent payments are equity-linked depending on the performance of a risky stock or index. The shot-noise effects are incorporated in the modeling of stock prices, implying that sudden jumps in the stock price are allowed, but their effects may gradually decline over time. The contracts are priced using the principle of equivalent utility. Under the assumption of exponential utility, we find the optimal investment strategy and show that the indifference premium solves a non-linear partial integro-differential equation (PIDE). The Feynman–Kač form solutions are derived for two special cases of the PIDE. We further discuss the problem for the asymptotic shot-noise process, and find the probabilistic representation of the indifference premium. We also provide some numerical examples and analyze parameter sensitivities for the results obtained in this paper.
Keywords: Life insurance; Shot-noise process; Indifference pricing; Partial integro-differential equation; Hamilton–Jacobi–Bellman equation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668716304139
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:77:y:2017:i:c:p:119-132
DOI: 10.1016/j.insmatheco.2017.09.002
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().