Semi-parametric extensions of the Cairns–Blake–Dowd model: A one-dimensional kernel smoothing approach
Han Li and
O’Hare, Colin
Insurance: Mathematics and Economics, 2017, vol. 77, issue C, 166-176
Abstract:
Over the last few decades, there has been an enormous growth in mortality modeling as the field of mortality risk and longevity risk has attracted great attention from academic, government and private sectors. In this paper, we propose a time-varying coefficient (TVC) mortality model aiming to combine the good characteristics of existing models with efficient model calibration methods. Nonparametric kernel smoothing techniques have been applied in the literature of mortality modeling and based on the findings from Li et al.’s (2015) study, such techniques can significantly improve the forecasting performance of mortality models. In this study we take the same path and adopt a kernel smoothing approach along the time dimension. Since we follow the model structure of the Cairns–Blake–Dowd (CBD) model, the TVC model we propose can be seen as a semi-parametric extension of the CBD model and it gives specific model design according to different countries’ mortality experience. Our empirical study presented here includes Great Britain, the United States, and Australia amongst other developed countries. Fitting and forecasting results from the empirical study have shown superior performances of the model over a selection of well-known mortality models in the current literature.
Keywords: Mortality; Semi-parametric; Time-varying coefficients; Kernel smoothing; Forecasting (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668717300446
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:77:y:2017:i:c:p:166-176
DOI: 10.1016/j.insmatheco.2017.10.001
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().