EconPapers    
Economics at your fingertips  
 

An approximation method for risk aggregations and capital allocation rules based on additive risk factor models

Ming Zhou (), Jan Dhaene and Jing Yao

Insurance: Mathematics and Economics, 2018, vol. 79, issue C, 92-100

Abstract: This paper proposes the use of convex lower bounds as approximation to evaluate the aggregation of risks, based on additive risk factor models in the multivariate generalized Gamma distribution context. We consider two types of additive risk factor model. In Model 1, the risk factors that contribute to the aggregation are deterministic. In Model 2, we consider contingent risk factors. We work out the explicit formulae of the convex lower bounds, by which we propose an analytical approximate capital allocation rule based on the conditional tail expectation. We conduct stress tests to show that our method is robust across various dependence structures.

Keywords: Risk aggregation; Convex lower bound; Capital allocation; Approximation; Generalized Gamma distribution (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668717303931
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:79:y:2018:i:c:p:92-100

DOI: 10.1016/j.insmatheco.2018.01.002

Access Statistics for this article

Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu

More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:insuma:v:79:y:2018:i:c:p:92-100