Large deviations for risk measures in finite mixture models
Valeria Bignozzi,
Claudio Macci and
Lea Petrella
Insurance: Mathematics and Economics, 2018, vol. 80, issue C, 84-92
Abstract:
Due to their heterogeneity, insurance risks can be properly described as a mixture of different fixed models, where the weights assigned to each model may be estimated empirically from a sample of available data. If a risk measure is evaluated on the estimated mixture instead of the (unknown) true one, then it is important to investigate the committed error. In this paper we study the asymptotic behaviour of estimated risk measures, as the data sample size tends to infinity, in the fashion of large deviations. We obtain large deviation results by applying the contraction principle, and the rate functions are given by a suitable variational formula; explicit expressions are available for mixtures of two models. Finally, our results are applied to the most common risk measures, namely the quantiles, the Expected Shortfall and the shortfall risk measure.
Keywords: Contraction principle; Lagrange multipliers; Quantile; Entropic risk measure; Relative entropy (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016766871730495X
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Large deviations for risk measures in finite mixture models (2018) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:80:y:2018:i:c:p:84-92
DOI: 10.1016/j.insmatheco.2018.03.005
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().