A multivariate tail covariance measure for elliptical distributions
Zinoviy Landsman,
Udi Makov and
Tomer Shushi
Insurance: Mathematics and Economics, 2018, vol. 81, issue C, 27-35
Abstract:
This paper introduces a multivariate tail covariance (MTCov) measure, which is a matrix-valued risk measure designed to explore the tail dispersion of multivariate loss distributions. The MTCov is the second multivariate tail conditional moment around the MTCE, the multivariate tail conditional expectation (MTCE) risk measure. Although MTCE was recently introduced in Landsman et al. (2016a), in this paper we essentially generalize it, allowing for quantile levels to obtain the different values corresponded to each risk. The MTCov measure, which is also defined for the set of different quantile levels, allows us to investigate more deeply the tail of multivariate distributions, since it focuses on the variance–covariance dependence structure of a system of dependent risks. As a natural extension, we also introduced the multivariate tail correlation matrix (MTCorr). The properties of this risk measure are explored and its explicit closed-form expression is derived for the elliptical family of distributions. As a special case, we consider the normal, Student-t and Laplace distributions, prevalent in actuarial science and finance. The results are illustrated numerically with data of some stock returns.
Keywords: Elliptical distributions; Multivariate risk measures; Multivariate tail conditional expectation; Tail variance; Multivariate tail covariance; Tail confidence ellipsoid (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668717302561
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:81:y:2018:i:c:p:27-35
DOI: 10.1016/j.insmatheco.2018.04.002
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().