EconPapers    
Economics at your fingertips  
 

Robust non-zero-sum investment and reinsurance game with default risk

Ning Wang, Nan Zhang, Zhuo Jin and Linyi Qian

Insurance: Mathematics and Economics, 2019, vol. 84, issue C, 115-132

Abstract: This paper investigates a non-zero-sum stochastic differential game between two competitive CARA insurers, who are concerned about the potential model ambiguity and aim to seek the robust optimal reinsurance and investment strategies. The ambiguity-averse insurers are allowed to purchase reinsurance treaty to mitigate individual claim risks; and can invest in a financial market consisting of one risk-free asset, one risky asset and one defaultable corporate bond. The objective of each insurer is to maximize the expected exponential utility of his terminal surplus relative to that of his competitor under the worst-case scenario of the alternative measures. Applying the techniques of stochastic dynamic programming, we derive the robust Nash equilibrium reinsurance and investment policies explicitly and present the corresponding verification theorem. Finally, we perform some numerical examples to illustrate the influence of model parameters on the equilibrium reinsurance and investment strategies and draw some economic interpretations from these results.

Keywords: Non-zero-sum stochastic differential game; Relative performance; Nash equilibrium; Model ambiguity; Default risk (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668718301148
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:84:y:2019:i:c:p:115-132

DOI: 10.1016/j.insmatheco.2018.09.009

Access Statistics for this article

Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu

More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:insuma:v:84:y:2019:i:c:p:115-132