Economics at your fingertips  

Quantitative modeling of risk management strategies: Stochastic reserving and hedging of variable annuity guaranteed benefits

Runhuan Feng and Bingji Yi

Insurance: Mathematics and Economics, 2019, vol. 85, issue C, 60-73

Abstract: Variable annuities are enhanced life insurance products that offer policyholders participation in equity investment with minimum return guarantees. There are two well-established risk management strategies in practice for variable annuity guaranteed benefits, namely, (1) stochastic reserving based on risk measures such as value-at-risk (VaR) and conditional-tail-expectation (CTE); (2) dynamic hedging using exchange-traded derivatives. The latter is increasingly more popular than the former, due to a common perception of its low cost. While both have been extensively used in the insurance industry, scarce academic literature has been written on the comparison of the two approaches. This paper presents a quantitative framework in which two risk management strategies are mathematically formulated and where the basis for decision making can be determined analytically. Besides, the paper proposes dynamic hedging of net liabilities as a more effective and cost-saving alternative to the common practice of dynamic hedging of gross liabilities. The finding of this paper does not support the general perception that dynamic hedging is always more affordable than stochastic reserving, although in many cases it is with the CTE risk measure.

Keywords: Variable annuity guaranteed benefit; Guaranteed minimum accumulation benefit; Risk measures; Stochastic reserving; Dynamic hedging (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

DOI: 10.1016/j.insmatheco.2018.12.003

Access Statistics for this article

Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu

More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Haili He ().

Page updated 2020-05-02
Handle: RePEc:eee:insuma:v:85:y:2019:i:c:p:60-73