EconPapers    
Economics at your fingertips  
 

Multivariate count data generalized linear models: Three approaches based on the Sarmanov distribution

Catalina Bolancé and Raluca Vernic

Insurance: Mathematics and Economics, 2019, vol. 85, issue C, 89-103

Abstract: Starting from the question: What is the accident risk of an insured individual?, we consider that the customer has contracted policies in different insurance lines: motor and home. Three models based on the multivariate Sarmanov distribution are analyzed. Driven by a real data set that takes into account three types of accident risks, two for motor and one for home, three trivariate Sarmanov distributions with generalized linear models (GLMs) for marginals are considered and fitted to the data. To estimate the parameters of these three models, we discuss a method for approaching the maximum likelihood (ML) estimators. Finally, the three models are compared numerically with the simpler trivariate Negative Binomial GLM and with elliptical copula based models.

Keywords: Discrete multivariate Sarmanov distribution; Negative Binomial distribution; Generalized linear model; Dependence (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668717305607
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:85:y:2019:i:c:p:89-103

DOI: 10.1016/j.insmatheco.2019.01.001

Access Statistics for this article

Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu

More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:insuma:v:85:y:2019:i:c:p:89-103