EconPapers    
Economics at your fingertips  
 

A class of mixture of experts models for general insurance: Theoretical developments

Tsz Chai Fung, Andrei L. Badescu and X. Sheldon Lin

Insurance: Mathematics and Economics, 2019, vol. 89, issue C, 111-127

Abstract: In the Property and Casualty (P&C) ratemaking process, it is critical to understand the effect of policyholders’ risk profile to the number and amount of claims, the dependence among various business lines and the claim distributions. To include all the above features, it is essential to develop a regression model which is flexible and theoretically justified. Motivated by the issues above, we propose a class of logit-weighted reduced mixture of experts (LRMoE) models for multivariate claim frequencies or severities distributions. LRMoE is interpretable, as it has two components: Gating functions, which classify policyholders into various latent sub-classes; and Expert functions, which govern the distributional properties of the claims. Also, upon the development of denseness theory in regression setting, we can heuristically interpret the LRMoE as a “fully flexible” model to capture any distributional, dependence and regression structures subject to a denseness condition. Further, the mathematical tractability of the LRMoE is guaranteed since it satisfies various marginalization and moment properties. Finally, we discuss some special choices of expert functions that make the corresponding LRMoE “fully flexible”. In the subsequent paper (Fung et al., 2019b), we will focus on the estimation and application aspects of the LRMoE.

Keywords: Claim frequency and severity modeling; Denseness theory; Mixture of experts models; Multivariate regression analysis; Neural network (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668719303956
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:89:y:2019:i:c:p:111-127

DOI: 10.1016/j.insmatheco.2019.09.007

Access Statistics for this article

Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu

More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:insuma:v:89:y:2019:i:c:p:111-127