A Bowley solution with limited ceded risk for a monopolistic reinsurer
Yichun Chi,
Ken Seng Tan and
Sheng Chao Zhuang
Insurance: Mathematics and Economics, 2020, vol. 91, issue C, 188-201
Abstract:
Borch (1969) advocated that the study of optimal reinsurance design should take into consideration the conflicting interests of both an insurer and a reinsurer. Motivated by this and exploiting a Bowley solution (or Stackelberg equilibrium game), this paper proposes a two-step model that tackles an optimal risk transfer problem between the insurer and the reinsurer. From the insurer’s perspective, the first step of the model provisionally derives an optimal reinsurance policy for a given reinsurance premium while reflecting the reinsurer’s risk appetite. The reinsurer’s risk appetite is controlled by imposing upper limits on the first two moments of the coverage. Through a comparative analysis, the effect of the insurer’s initial wealth on the demand for reinsurance is then examined, when the insurer’s risk aversion and prudence are taken into account. Based on the insurer’s provisional strategy, the second step of the model determines the monopoly premium that maximizes the reinsurer’s expected profit while still satisfying the insurer’s incentive condition. Numerical examples are provided to illustrate our Bowley solution.
Keywords: Bowley solution; Decreasing absolute prudence; Decreasing absolute risk aversion; Demand for reinsurance; Downside risk (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668720300184
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:91:y:2020:i:c:p:188-201
DOI: 10.1016/j.insmatheco.2020.02.002
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().