Risk analysis with categorical explanatory variables
Seul Ki Kang,
Liang Peng and
Hongmin Xiao
Insurance: Mathematics and Economics, 2020, vol. 91, issue C, 238-243
Abstract:
To better forecast the Value-at-Risk of the aggregate insurance losses, Heras et al. (2018) propose a two-step inference of using logistic regression and quantile regression without providing detailed model assumptions, deriving the related asymptotic properties, and quantifying the inference uncertainty. This paper argues that the application of quantile regression at the second step is not necessary when explanatory variables are categorical. After describing the explicit model assumptions, we propose another two-step inference of using logistic regression and the sample quantile. Also, we provide an efficient empirical likelihood method to quantify the uncertainty. A simulation study confirms the good finite sample performance of the proposed method.
Keywords: Aggregate loss; Empirical likelihood; Insurance ratemaking; Logistic regression; Value-at-Risk (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668720300238
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:91:y:2020:i:c:p:238-243
DOI: 10.1016/j.insmatheco.2020.02.007
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().