Modelling extreme claims via composite models and threshold selection methods
Yinzhi Wang,
Ingrid Hobæk Haff and
Arne Huseby
Insurance: Mathematics and Economics, 2020, vol. 91, issue C, 257-268
Abstract:
The existence of large and extreme claims of a non-life insurance portfolio influences the ability of (re)insurers to estimate the reserve. The excess over-threshold method provides a way to capture and model the typical behaviour of insurance claim data. This paper discusses several composite models with commonly used bulk distributions, combined with a 2-parameter Pareto distribution above the threshold. We have explored how several threshold selection methods perform when estimating the reserve as well as the effect of the choice of bulk distribution, with varying sample size and tail properties. To investigate this, a simulation study has been performed. Our study shows that when data are sufficient, the empirical rule has the overall best performance in terms of the quality of the reserve estimate. The second best are either the square root rule or the exponentiality test. The latter works better when the right tail of the data is extreme. As the sample size becomes small, the best performance is obtained with simultaneous estimation. Further, the influence of the choice of bulk distribution seems to be rather large, especially when the distribution is heavy-tailed. Moreover, it shows that the empirical estimate of p≤b, the probability that a claim is below the threshold, is more robust than the theoretical one.
Keywords: Loss distributions; Excess over-threshold method; Threshold selection; Risk measures; Monte Carlo simulation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668720300251
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:91:y:2020:i:c:p:257-268
DOI: 10.1016/j.insmatheco.2020.02.009
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().