On occupation times in the red of Lévy risk models
David Landriault,
Bin Li and
Mohamed Amine Lkabous
Insurance: Mathematics and Economics, 2020, vol. 92, issue C, 17-26
Abstract:
In this paper, we obtain analytical expression for the distribution of the occupation time in the red (below level 0) up to an (independent) exponential horizon for spectrally negative Lévy risk processes and refracted spectrally negative Lévy risk processes. This result improves the existing literature in which only the Laplace transforms are known. Due to the close connection between occupation time and many other quantities, we provide a few applications of our results including future drawdown, inverse occupation time, Parisian ruin with exponential delay, and the last time at running maximum.
Keywords: Occupation time; Inverse occupation time; Parisian ruin; Lévy insurance risk processes; Scale functions (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668720300275
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:92:y:2020:i:c:p:17-26
DOI: 10.1016/j.insmatheco.2020.02.011
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().