Range Value-at-Risk bounds for unimodal distributions under partial information
Carole Bernard,
Rodrigue Kazzi and
Steven Vanduffel ()
Insurance: Mathematics and Economics, 2020, vol. 94, issue C, 9-24
Abstract:
In this paper, we derive upper and lower bounds on the Range Value-at-Risk of the portfolio loss when we only know its mean, variance, and feature of unimodality. In a first step, we use some classic results on stochastic ordering to reduce this optimization problem to a parametric one, which in a second step can be solved using standard methods. The novel approach we propose makes it possible to obtain analytical results for all probability levels and is moreover amendable to other situations of interest. Specifically, we apply our method to obtain risk bounds in the case of a portfolio loss that is non-negative (as is often the case in practice) and whose variance is possibly infinite. Numerical illustrations show that in various cases of interest we obtain bounds that are of practical importance.
Keywords: Model risk; Value-at-Risk; Tail Value-at-Risk; Range Value-at-Risk; Convex ordering; Unimodal distributions; Risk bounds (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668720300809
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:94:y:2020:i:c:p:9-24
DOI: 10.1016/j.insmatheco.2020.05.013
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().