Modeling stochastic mortality for joint lives through subordinators
Yuxin Zhang and
Patrick Brockett
Insurance: Mathematics and Economics, 2020, vol. 95, issue C, 166-172
Abstract:
There is a burgeoning literature on mortality models for joint lives. In this paper, we propose a new model in which we use time-changed Brownian motion with dependent subordinators to describe the mortality of joint lives. We then employ this model to estimate the mortality rate of joint lives in a well-known Canadian insurance data set. Specifically, we first depict an individual’s death time as the stopping time when the value of the hazard rate process first reaches or exceeds an exponential random variable, and then introduce the dependence through dependent subordinators. Compared with existing mortality models, this model better interprets the correlation of death between joint lives, and allows more flexibility in the evolution of the hazard rate process. Empirical results show that this model yields highly accurate estimations of mortality compared to the baseline non-parametric (Dabrowska) estimation.
Keywords: Mortality rate; Joint lives; Survival; Stochastic process; Subordinator (search for similar items in EconPapers)
JEL-codes: C1 C6 I1 J1 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668720301104
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:95:y:2020:i:c:p:166-172
DOI: 10.1016/j.insmatheco.2020.07.010
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().