Stochastic differential investment and reinsurance games with nonlinear risk processes and VaR constraints
Ning Wang,
Nan Zhang,
Zhuo Jin and
Linyi Qian
Insurance: Mathematics and Economics, 2021, vol. 96, issue C, 168-184
Abstract:
This paper investigates a class of non-zero-sum stochastic differential investment and reinsurance games between two insurance companies. We allow both insurers to purchase a proportional reinsurance contract and invest in risky and risk-free assets. When applying the generalized mean–variance premium principle in determining reinsurance premium, the surplus process becomes quadratic in the retained proportion of the claims. The optimization criterion of each insurer is to maximize the expected utility of the insurer’s terminal performance relative to that of his competitor. In addition, we incorporate dynamic Value-at-Risk (VaR) constraints in the optimization problems of both insurers to satisfy the capital requirements from regulators. The results show that this game problem can be converted to solving a system of nonlinear equations by means of dynamic programming principle and Karush–Kuhn–Tucker (KKT) conditions. Specifically, when both insurers are constant absolute risk aversion (CARA) institutions and the reinsurance premium principle reduces to the expected value principle, we derive the simplified expressions for the Nash equilibrium strategies. Finally, we use some numerical examples to illustrate the effects of several model parameters on the Nash equilibrium strategies under three different scenarios.
Keywords: Non-zero-sum stochastic differential game; Dynamic Value-at-Risk (VaR); Quadratic risk process; Relative performance; Nash equilibrium (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668720301542
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:96:y:2021:i:c:p:168-184
DOI: 10.1016/j.insmatheco.2020.11.004
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().