EconPapers    
Economics at your fingertips  
 

Dynamic hazards modelling for predictive longevity risk assessment

Elena Kulinskaya, Lisanne Andra Gitsels, Ilyas Bakbergenuly and Nigel R. Wright

Insurance: Mathematics and Economics, 2021, vol. 96, issue C, 222-231

Abstract: Predictive risk assessment and risk stratification models based on geodemographic postcode-based consumer classification are widely used in the pension and life insurance industry. However, these are static socio-economic models not directly related to health information. Health information is increasingly used for annuity underwriting in the UK, using health status when the annuity is purchased. In real life, people develop new health conditions and lifestyle habits and can start and stop a certain treatment regime at any time. This requires the ability to dynamically classify clients into time-varying risk profiles based on the presence of evolving health-related conditions, treatments and outcomes. We incorporate landmark analysis of electronic health records (EHR), in combination with the baseline hazards described by Gompertz survival distributions, for dynamic prediction of survival probabilities and life expectancy. We discuss a case-study based on landmark analysis of the survival experience of a cohort of 110,243 healthy participants who reached age 60 between 1990–2000.

Keywords: Hazard function; Health data; Mortality; Population health; Landmark analysis; Gompertz distribution (search for similar items in EconPapers)
JEL-codes: C13 C18 C46 I13 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668720301517
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:96:y:2021:i:c:p:222-231

DOI: 10.1016/j.insmatheco.2020.11.001

Access Statistics for this article

Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu

More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:insuma:v:96:y:2021:i:c:p:222-231