Deep hedging of long-term financial derivatives
Alexandre Carbonneau
Insurance: Mathematics and Economics, 2021, vol. 99, issue C, 327-340
Abstract:
This study presents a deep reinforcement learning approach for global hedging of long-term financial derivatives. A similar setup as in Coleman et al. (2007) is considered with the risk management of lookback options embedded in guarantees of variable annuities with ratchet features. The deep hedging algorithm of Buehler et al. (2019a) is applied to optimize neural networks representing global hedging policies with both quadratic and non-quadratic penalties. To the best of the author’s knowledge, this is the first paper that presents an extensive benchmarking of global policies for long-term contingent claims with the use of various hedging instruments (e.g. underlying and standard options) and with the presence of jump risk for equity. Monte Carlo experiments demonstrate the vast superiority of non-quadratic global hedging as it results simultaneously in downside risk metrics two to three times smaller than best benchmarks and in significant hedging gains. Analyses show that the neural networks are able to effectively adapt their hedging decisions to different penalties and stylized facts of risky asset dynamics only by experiencing simulations of the financial market exhibiting these features. Numerical results also indicate that non-quadratic global policies are significantly more geared towards being long equity risk which entails earning the equity risk premium.
Keywords: Reinforcement learning; Global hedging; Variable annuity; Lookback option; Jump risk (search for similar items in EconPapers)
JEL-codes: C45 C61 G32 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668721000512
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:99:y:2021:i:c:p:327-340
DOI: 10.1016/j.insmatheco.2021.03.017
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().