The information content of sentiment indices in forecasting Value at Risk and Expected Shortfall: a Complete Realized Exponential GARCH-X approach
Antonio Naimoli
International Economics, 2023, vol. 176, issue C
Abstract:
The aim of this paper is to investigate the impact of public sentiment on tail risk forecasting. In this framework, we extend the Realized Exponential GARCH model to directly incorporate information from realized volatility measures and exogenous variables, thus resulting in a novel dynamically complete specification denoted as the Complete REGARCH-X model. Several sentiment indices related to social media and journal articles regarding the economy and stock market volatility are considered as potential drivers of volatility dynamics. An application to the prediction of daily Value-at-Risk and Expected Shortfall for the Standard & Poor’s 500 index provides evidence that combining the information content of realized volatility and sentiment measures can lead to significant accuracy gains in forecasting tail risk.
Keywords: Realized Exponential GARCH; Sentiment indices; Economic policy uncertainty; Tail risk forecasting; Risk management (search for similar items in EconPapers)
JEL-codes: C22 C53 C58 D80 E66 G32 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2110701723000719
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:inteco:v:176:y:2023:i:c:s2110701723000719
DOI: 10.1016/j.inteco.2023.100459
Access Statistics for this article
International Economics is currently edited by Valerie Mignon and Marcelo Olarreaga
More articles in International Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().