Modeling and forecasting short-term electricity load: A comparison of methods with an application to Brazilian data
Lacir J. Soares and
Marcelo Medeiros ()
International Journal of Forecasting, 2008, vol. 24, issue 4, 630-644
Abstract:
The goal of this paper is to describe a forecasting model for the hourly electricity load in the area covered by an electric utility located in the southeast of Brazil. A different model is constructed for each hour of the day. Each model is based on a decomposition of the daily series of each hour in two components. The first component is purely deterministic and is related to trends, seasonality, and the special days effect. The second is stochastic, and follows a linear autoregressive model. Nonlinear alternatives are also considered in the second step. The multi-step forecasting performance of the proposed methodology is compared with that of a benchmark model, and the results indicate that our proposal is useful for electricity load forecasting in tropical environments.
Keywords: Short-term; load; forecasting; Time; series; Seasonality; Linear; models; SARIMA; Time-series; decomposition (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (61)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169-2070(08)00091-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:24:y:2008:i:4:p:630-644
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().