EconPapers    
Economics at your fingertips  
 

Bayesian forecasting of parts demand

Phillip M. Yelland

International Journal of Forecasting, 2010, vol. 26, issue 2, 374-396

Abstract: As supply chains for high technology products increase in complexity, and as the performance expectations of these supply chains also increase, forecasts of parts demands have become indispensable to effective operations management in these markets. Unfortunately, rapid technological change and an abundance of product configurations mean that the demand for parts in high-tech products is frequently volatile and hard to forecast. The paper describes a Bayesian statistical model which was developed to forecast the parts demand for Sun Microsystems, Inc., a major vendor of enterprise computer products. The model embodies a parametric description of the part's life cycle, allowing it to anticipate changes in demand over time. Furthermore, using hierarchical priors, the model is able to pool demand patterns for a collection of parts, producing calibrated forecasts for new parts with little or no demand history. The paper discusses the problem addressed by the model, the model itself, and a procedure for calibrating it, then compares its forecast performance with those of alternatives.

Keywords: Bayesian; methods; Demand; forecasting; Forecasting; practice; State; space; models; Supply; chain (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169-2070(09)00177-0
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:26:y::i:2:p:374-396

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:26:y::i:2:p:374-396