Bayesian and non-Bayesian analysis of the seemingly unrelated regression model with Student-t errors, and its application for forecasting
Arnold Zellner and
Tomohiro Ando
International Journal of Forecasting, 2010, vol. 26, issue 2, 413-434
Abstract:
A description of computationally efficient methods for the Bayesian analysis of Student-t seemingly unrelated regression (SUR) models with unknown degrees of freedom is given. The method combines a direct Monte Carlo (DMC) approach with an importance sampling procedure to calculate Bayesian estimation and prediction results using a diffuse prior. This approach is employed to compute Bayesian posterior densities for the parameters, as well as predictive densities for future values of variables and the associated moments, intervals and other quantities that are useful to both forecasters and others. The results obtained using our approach are compared to those yielded by the use of DMC for a standard normal SUR model.
Keywords: Direct; Monte; Carlo; Heavy; tail; behavior; Importance; sampling; Markov; chain; Monte; Carlo (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169-2070(09)00213-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:26:y::i:2:p:413-434
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().