Improving Australian Football League player performance forecasts using optimized nonlinear smoothing
Jonathan Sargent and
Anthony Bedford
International Journal of Forecasting, 2010, vol. 26, issue 3, 489-497
Abstract:
This research demonstrates how exponentially-smoothed, one-step forecasts of Australian Football League (AFL) player performance data are improved by first applying a nonlinear (Tukey) smoother to the raw data. The player performance data are derived from a simplistic linear model, such as the one seen in an AFL "fantasy" football league. A smoothing macro allows experimentation with various running median combinations which are designed to eliminate the noise from each player's season data. Performing optimizations on each player's running median sequence in conjunction with the exponential smoothing parameter results in a noticeably lower mean squared error per player than either mean projection or simple exponential smoothing. A Monte Carlo simulation of the median sequence and smoothing parameter combinations creates confidence intervals for assessing the forecasts. The results are demonstrated on both a season and a match-by-match basis.
Keywords: Nonlinear smoothers 4253H; T smoothing Performance prediction (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169-2070(09)00171-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:26:y::i:3:p:489-497
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().