Alternative methods of predicting competitive events: An application in horserace betting markets
Stefan Lessmann,
Ming-Chien Sung and
Johnnie E.V. Johnson
International Journal of Forecasting, 2010, vol. 26, issue 3, 518-536
Abstract:
Accurately estimating the winning probabilities of participants in competitive events, such as elections and sports events, represents a challenge to standard forecasting frameworks such as regression or classification. They are not designed for modeling the competitive element, whereby a specific participant's chance of success depends not only on his/her individual capabilities but also on those of his/her competitors. In this paper we consider this problem in the competitive context of horseracing and demonstrate how Breiman's (2001) random forest classifier can be adapted in order to predict race outcomes. Several empirical experiments are undertaken to demonstrate the features of the adapted random forest procedure and confirm its effectiveness as a forecasting model. Specifically, we demonstrate that predictions derived from the proposed model can be used to make substantial profits, and that these predictions outperform those from traditional statistical techniques.
Keywords: Probability; forecasting; Classification; Random; forest; Sports; forecasting (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169-2070(09)00214-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:26:y::i:3:p:518-536
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().