State space models for estimating and forecasting fertility
Cristina Rueda and
Pilar Rodríguez
International Journal of Forecasting, 2010, vol. 26, issue 4, 712-724
Abstract:
We introduce multivariate state space models for estimating and forecasting fertility rates that are dynamic alternatives to logistic representations for fixed time points. Strategies are provided for the Kalman filter and for quasi-Newton algorithm initialization, that assure the convergence of the iterative fitting process. The broad impact of the new methodology in practice is shown using data series from Spain, Sweden and Australia, and by comparing the results with a recent approach based on functional data analysis and also with official forecasts. Very satisfactory short- and medium-term forecasts are obtained. Besides this, the new modeling proposal provides practitioners with several suitable interpretative tools, and the application here is an interesting example of the usefulness of the state space representation in modelling real multivariate processes.
Keywords: State; space; model; Kalman; filter; Fertility; rates; Demographic; forecast; Logistic; model; Total; fertility; rate (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169-2070(09)00144-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:26:y::i:4:p:712-724
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().