A hierarchical procedure for the combination of forecasts
Mauro Costantini and
Carmine Pappalardo
International Journal of Forecasting, 2010, vol. 26, issue 4, 725-743
Abstract:
This paper proposes a strategy to increase the efficiency of forecast combination. Given the availability of a wide range of forecasts for the same variable of interest, our goal is to apply combining methods to a restricted set of models. With this aim, a hierarchical procedure based on an encompassing test is considered. First, forecasting models are ranked according to a measure of predictive accuracy (RMSFE). The models are then selected for combination such that each forecast is not encompassed by any of the competing forecasts. Thus the hierarchical procedure represents a compromise between model selection and model averaging. The robustness of the procedure is investigated in terms of the relative RMSFE using ISAE (Institute for Studies and Economic Analyses) short-term forecasting models for monthly industrial production in Italy.
Keywords: Combining; forecasts; Econometric; models; Evaluating; forecasts; Model; selection; Time; series (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169-2070(09)00142-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:26:y::i:4:p:725-743
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().