Predictive-sequential forecasting system development for cash machine stocking
Adam R. Brentnall,
Martin J. Crowder and
David J. Hand
International Journal of Forecasting, 2010, vol. 26, issue 4, 764-776
Abstract:
The development of a system for predicting the daily amounts withdrawn from automated teller machines (ATMs) for inventory control is considered, using data from 190 ATMs in the United Kingdom over a two-year period. We argue that density forecasts are more appropriate than point forecasts and that a good forecasting system might choose a different model for each ATM. An analysis of the data finds that seasonal structure, first-order autocorrelation and cash-out days are important aspects of the data. Predictive sequential (prequential) comparisons between linear models, autoregressive models, structural time series models and Markov-switching models are made. The Markov-switching models are preferred because they are found to produce better density forecasts, and might also be more useful for inventory control because they separate the demand for cash from 'out-of-service' effects. A logarithmic scoring rule is used to choose the most appropriate seasonal and distributional assumptions for each ATM.
Keywords: Calibration; Demand; forecasting; Density; forecasts; Inventory; forecasting; Model; selection; Prequential; principle (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169-2070(09)00169-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:26:y::i:4:p:764-776
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().