EconPapers    
Economics at your fingertips  
 

Kernel-based calibration diagnostics for recession and inflation probability forecasts

John Galbraith and Simon van Norden ()

International Journal of Forecasting, 2011, vol. 27, issue 4, 1041-1057

Abstract: A probabilistic forecast is the estimated probability with which a future event will occur. One interesting feature of such forecasts is their calibration, or the match between the predicted probabilities and the actual outcome probabilities. Calibration has been evaluated in the past by grouping probability forecasts into discrete categories. We show here that we can do this without discrete groupings; the kernel estimators that we use produce efficiency gains and smooth estimated curves relating the predicted and actual probabilities. We use such estimates to evaluate the empirical evidence on the calibration error in a number of economic applications, including the prediction of recessions and inflation, using both forecasts made and stored in real time and pseudo-forecasts made using the data vintage available at the forecast date. The outcomes are evaluated using both first-release outcome measures and subsequent revised data. We find substantial evidence of incorrect calibration in professional forecasts of recessions and inflation from the SPF, as well as in real-time inflation forecasts from a variety of output gap models.

Keywords: Calibration; Kernel; regression; Probability; forecast; Real-time; data; Survey; of; Professional; Forecasters (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207011000227
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:27:y:2011:i:4:p:1041-1057

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:27:y:2011:i:4:p:1041-1057