Forecasting abnormal stock returns and trading volume using investor sentiment: Evidence from online search
Kissan Joseph,
M. Babajide Wintoki and
Zelin Zhang
International Journal of Forecasting, 2011, vol. 27, issue 4, 1116-1127
Abstract:
We examine the ability of online ticker searches (e.g. XOM for Exxon Mobil) to forecast abnormal stock returns and trading volumes. Specifically, we argue that online ticker searches serve as a valid proxy for investor sentiment -- a set of beliefs about cash flows and investment risks that are not necessarily justified by the facts at hand -- which is generally associated with less sophisticated, retail investors. Based on prior research on investor sentiment, we expect online search intensity to forecast stock returns and trading volume, and also expect that highly volatile stocks, which are more difficult to arbitrage, will be more sensitive to search intensity than less volatile stocks. In a sample of S&P 500 firms over the period 2005-2008, we find that, over a weekly horizon, online search intensity reliably predicts abnormal stock returns and trading volumes, and that the sensitivity of returns to search intensity is positively related to the difficulty of a stock being arbitraged. More broadly, our study highlights the potential of employing online search data for other forecasting applications.
Keywords: Investor; sentiment; Finance; Fama-French; model; Portfolio; tests; Marketing (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (174)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207011000021
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:27:y:2011:i:4:p:1116-1127
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().