EconPapers    
Economics at your fingertips  
 

MLP ensembles improve long term prediction accuracy over single networks

Paulo J.L. Adeodato, Adrian L. Arnaud, Germano C. Vasconcelos, Rodrigo C.L.V. Cunha and Domingos S.M.P. Monteiro

International Journal of Forecasting, 2011, vol. 27, issue 3, 661-671

Abstract: This work describes an award winning approach for solving the NN3 Forecasting Competition problem, focusing on the sound experimental validation of its main innovative feature. The NN3 forecasting task consisted of predicting 18 future values of 111 short monthly time series. The main feature of the approach was the use of the median for combining the forecasts of an ensemble of 15 MLPs to predict each time series. Experimental comparison to a single MLP shows that the ensemble increases the performance accuracy for multiple-step ahead forecasting. This system performed well on the withheld data, having finished as the second best solution of the competition with an SMAPE of 16.17%.

Keywords: Forecasting; competitions; Time; series; Neural; networks; Automatic; forecasting; Nonlinear; time; series (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207009000995
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:27:y::i:3:p:661-671

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:27:y::i:3:p:661-671